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Entangled networks, super-homogeneity and optimal network topology
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A new family of graphs, entangled networks, with optimal properties in many respects, is intro-
duced. By definition, their topology is such that optimizes synchronizability for generic dynamical
processes. These networks are shown to have an extremely homogeneous structure: degree, node-
distance, betweenness, and loop distributions are all very narrow. They are characterized as well by
a very interwoven (entangled) structure with short average distances, large loops, and no well-defined
community-structure (poor modularity). More importantly, we show that this family of nets exhibits
an excellent performance with respect to other connectivity or flow properties such as robustness
against errors and attacks, minimal first-passage time of random walks, good searchability, efficient
communication, etc. These remarkable features convert entangled networks in a powerful and useful
concept, optimal or almost-optimal in many senses, and with plenty of potential applications in
network design, computer science, or neuroscience.

PACS numbers: 89.75.Hc,05.45.Xt,87.18.Sn

The ubiquitous presence of networks in Nature and so-
cial sciences is one of the main findings in the study of
complex systems. The topology of such networks has
been profusely studied [1] and some basic architectures
have been discovered. The scale-free one, characterized
by a power-law connectivity-distribution, is probably the
most widely studied and celebrated, while other exam-
ples are small-world, hierarchical, Apollonian, static net-
works, etc [1]. Right after the first topological studies,
the interest has shifted to the analysis of functional or
dynamical aspects of processes occurring on networks,
the evolution of the network topology, and the interplay
between these last two dynamical features. Indeed, this
“network perspective” has become a new paradigmatic
way to look at complex systems. One particular issue
that has attracted much interest because of its concep-
tual relevance and practical implications is the study of
the synchronizability of individual dynamical processes
occurring at the vertices of a given network. How does
synchronizability depend upon network topology? This
problem is much more general than it seems at first sight,
as it is directly related to the question of how difficult it
is to transmit information across the net or how difficult
is for the sites to “talk” to each other. For example, a re-
cently addressed important task is to determine the most
efficient topology for communication networks both with
and without traffic congestion [2]. Other problems as
the minimization of first-passage times of random walk-
ers on networks, the optimal topology in social networks
to reach consensus, or the performance optimization of
Hopfield neural-networks [3, 4] are also similar in essence.
Hence, the issue of synchronizability is linked to many
specific problems in different disciplines as computer sci-
ence, biology, sociology, etc. [2, 5]. Some aspects of these
problems have been already tackled; a key contribution

is due to Barahona and Pecora (BP) [5] who established
a criterion based on spectral techniques to determine the
stability of synchronized states on networks.

The criterion is as follows. Consider a dynamical
process ẋi = F (xi) − σ

∑

j LijH(xj), where xi with
i ∈ 1, 2, ..., N are dynamical variables, F and H are the
evolution and the coupling functions respectively, σ is
a constant, and Lij is the Laplacian matrix, defined by
Lii = ki (the connectivity degree of node i), Lij = −1 if
nodes i and j are connected, and Lij = 0 otherwise. A
standard linear stability analysis can be performed by i)
expanding around a synchronized state x1 = x2 = . . . =
xN = xs with xs solution of ẋs = F (xs), ii) diagonalizing
L to find its N eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λN , and
iii) writing equations for the normal modes yi of per-
turbations ẏi = [F ′(xs) − σλiH

′(xs)] yi which have all
the same form but different effective coupling α = σλi.
BP observed that the maximum Lyapunov exponent is in
general negative only within a bounded interval [αA, αB],
and a decreasing (increasing) function below (above) (see
fig. 1 in [5]). Requiring all effective couplings to lie within
such an interval, αA < σλ2 ≤ . . . ≤ σλN < αB, it is
straightforward to conclude that a synchronized state is
linearly stable on a network if and only if λN

λ2

< αB

αA
. No-

tice that the left hand side depends only on the network
topology while the right hand side depends exclusively
on the dynamics (through F and G, and xs). Moreover,
the interval (αA, αB) in which the synchronized state
is stable is larger for smaller eigenratios λN/λ2, whence
one concludes that a network exhibits better synchroniz-

ability if the ratio Q = λN/λ2 is as small as possible,
independently of the dynamics.

This letter is devoted (i) to build-up networks with a
fixed number of nodes N and average connectivity 〈k〉,
exhibiting a degree of synchronizability as high as pos-
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sible (i.e. minimizing Q), (ii) to explore the topologi-
cal features converting them into highly synchronizable,
and (iii) to study their connection to networks optimiz-
ing other flow or connectivity properties relevant in neu-
rocomputing, computer science, or graph theory.

First, we overview how Q behaves in some well-known
topologies. For networks with the small-world property
[1] Q is smaller than for deterministic graphs or purely
random networks [5]. This was attributed to the exis-
tence of short characteristic paths between sites. How-
ever, Nishikawa et al. in a study of other small-world net-
works concluded that Q decreases as some heterogeneity
measures decrease, even if the average distance increases
[6]. Also, Hong et al. concluded that Q decreases when-
ever the betweenness heterogeneity decreases [7]. In or-
der to extend and systematize these results and construct
optimal synchronizable networks, and in the absence of a
better strategy, we define a numerical algorithm able to
minimize Q and search for such optimal nets.

Our optimization algorithm is a modified simulated
annealing [8] initialized with a random network with
N nodes and an average connectivity-degree 〈k〉. At
each step the number of rewiring trials is randomly ex-
tracted from an exponential distribution. Attempted
rewirings are (i) rejected if the updated network is dis-
connected, and otherwise (ii) accepted if δQ = Qfinal −
Qinitial < 0, or (iii) accepted with probability [9]
p = min

(

1, [1 − (1 − q)δQ/T ]1/(1−q)
)

(where T is a
temperature-like parameter) if δQ ≥ 0. In the q → 1
limit the usual Metropolis algorithm is recovered [9],
while we choose q = −3 as it gives the fastest conver-
gence (though results do not depend on this). The first
N rewirings are performed at T = ∞, and they are used
to calculate a new T such that the largest δQ among
the first N ones would be accepted with large probabil-
ity; in particular, we take T = (1 − q) · (δQ)max. T is
kept fixed for 100N rewiring trials or 10N accepted ones,
whichever occurs first. Then, T is decreased by 10% and
the process iterated until there is no change during 5
successive temperature steps, assuming that a (relative)
minimum of Q has been found. Most of these details can
be changed without affecting significatively the final re-
sults, while the main drawback of the algorithm is that
the calculation of eigenvalues is slow.

The network found by different runs of the algorithm
is unique (in most of the cases) as long as N is small
enough (N . 30), while they are slightly different if N
is larger. This indicates that the eigenvalue-ratio abso-
lute minimum is not always found, and that the evolving
network can remain trapped in some “metastable” state.
Nevertheless, the final values of Q are very similar from
run to run as shown in fig. 1. This fact makes us con-
fident that a reasonably good and robust approximation
to the optimal topology is obtained in general, though,
strictly speaking, we cannot guarantee that the optimal
solution has been actually found. To gain some insight
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FIG. 1: Eigenvalue ratio, Q as a function of the number of
algorithmic iterations. Starting from different initial condi-
tions, with N = 50, and 〈k〉 = 4, the algorithm converges to
networks, as the depicted one, with very similar values of Q.
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FIG. 2: Relation between the ratio Q and (i) node-
connectivity standard deviation, (ii) betweenness standard
deviation, (iii) average node-distance, and (iv) average be-
tweenness. The subscript “norm” stands for normalization
with respect to the respective mean-values, centering all the
measured quantities around 1.

into the topological traits favoring a small Q, we measure
different quantities during the algorithmic evolution and
plot them versus the changing eigenratio. It turns out (as
shown in fig. 2) that there is a strong correlation between
the tendency of Q to decrease and an increase in the
homogeneity (lowering variances) of the degree, average-
distance and betweenness distributions. In a nutshell, the
more synchronizable the network the more homogeneous
it is. Also, the average distance and betweenness tend
to diminish with Q, though these quantities are much
less sensitive that their corresponding standard devia-
tions (fig. 2). The emerging narrow betweenness distri-
bution is in sharp contrast with that of networks with a
strong community structure [10]. Indeed, a well known
method to detect communities consists in removing pro-
gressively links with the largest betweenness [10]. The
method leads to sound results whenever the betweenness
is broadly distributed. Hence, well-defined communities
do not exist in the emerging optimal networks.

Further inspection of these networks reveals another
significant trait: the absence of short loops. This can be
quantified by the girth (length of the shortest loop) or
more accurately by the average length, 〈ℓ〉, of the short-
est loop passing through each node. Indeed, for small
values of N and k, it is possible to identify the result-
ing optimized networks, as they have been studied in the
mathematical literature: some of them are cage graphs.
Let us recall that a (k, g)-cage graph is a k-regular graph
(i.e. with a delta-peaked connectivity distribution) of
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girth g having the minimum possible number of nodes.
For k = 3 and N = 10, 14, and 24, respectively, the op-
timal nets found by the algorithm are cage-graphs with
girth 5, 6, and 7 (called Petersen, Heawood and McGee
graphs) respectively (see fig. 3 and [11]). For other values
of N cage graphs do not exist but, in all cases, networks
with very narrow shortest-loop distributions, with large
mean values, are the optimal ones.

In general, we call the emerging structures entan-
gled networks: all sites are very much alike (super-
homogeneity) and the links form a very intrincated or in-
terwoven structure (no community-structure, poor mod-
ularity, and large shortest-loops). Every single site is
close to any other one (short average distance) owing not
to the existence of intermediate highly connected hubs, as
in scale-free nets [1], but as the result of a very “demo-
cratic” or entangled structure in which properties such
as site-to-site distance, betweenness, and minimum-loop-
size are very homogeneously distributed (see figs. 1, 3).

We have tried to use our (so far, partial) understand-
ing of the entangled-topology to generate them more ef-
ficiently. For example, the constraint of homogeneity
in the degree distribution can easily be implemented by
starting up the simulation with regular graphs (or almost
regular graphs) and performing changes respecting such
a property (by randomly selecting pairs of links and ex-
changing their endpoints). A much faster convergence
to optimal nets is obtained in this way. Other topo-
logical constraints are not so easy to implement. We
have performed simulations using target functions differ-
ent from Q in the optimization algorithm. Functions as
the average distance, average betweenness, or homogene-
ity measures (such as the distance variance or the be-
tweenness variance), or 〈ℓ〉 are not sufficient: they need
to be optimized simultaneously, in some proper way, to
obtain reasonable outputs. We have tried different com-
binations of these quantities. The best convergence and
results are obtained for the following combination of the
betweenness, b, the betweenness variance, ∆b and 〈ℓ〉:
U = ((∆b)2+〈b〉2)

N − 〈ℓ〉. The optimization of U is much
faster than the minimization of the eigenratio as U is
faster to compute than Q. For small networks the final
result is as good as the one of the original method but,
unfortunately, when N increases results worsen, though
the computational time is always relatively small. This
failure means that a full topological understanding of
(large) entangled networks has not been reached yet.

In order to put our findings into context, we discuss
some connections between our networks and known re-
sults and concepts in graph-theory. General considera-
tions show that λN ∈ [k, 2k] for regular graphs [12, 13].
As the variability of λN is very limited, optimizing Q is
almost equivalent in most cases to maximizing λ2 (also
called spectral gap), as we have verified numerically. It is
also known that for any family of regular graphs, Gm (m

is the family index), in which the size N goes to infinity
for large m the inequality λ2 ≤ k−2

√
k − 1 holds asymp-

totically, providing an upper bound for the spectral gap.
Finally, it can be shown that for any family Gm in which
the girth goes to infinity for large m, λ2 ≥ k − 2

√
k − 1

asymptotically, meaning that the optimal gap value is ob-
tained whenever the girth diverges for large N [12, 13].
Moreover, this remains true if the number of loops of
finite length is not extensive. These results are in accor-
dance with our observation of large girths and large 〈ℓ〉
for entangled networks (even if they are not at the large-
N limit). Another link with graph theory is provided
by the concept of expanders. These are highly connected
sparse graphs, with applications which include the design
of super-efficient communication networks among many
others [13, 14], and are defined as follows [12, 13]. Given
a subset S of nodes in a graph G, its “edge boundary” is
the set of links between nodes in S and nodes in its com-
plement. The “expansion parameter” h of a graph G is
the minimum ratio of the edge-boundary of a set and the
set itself. A sequence of regular graphs Gm is a family

of expanders if its size N diverges for large m and h is
always larger than a given positive constant. This means
that the boundary of any subset is always a non-vanishing
fraction of the subset itself. Note that a large value of
h corresponds to a very intrincated (entangled) network,
where it is not possible to isolate subsets with a small
boundary (or, in other words, where communities are
poorly defined). Also, the expansion property is strictly
related to the spectral gap [13]: λ2

2 ≤ h(G) ≤
√

2kλ2,
meaning that (families of) entangled networks are ex-
panders. Ramanujan graphs [13] are defined as k-regular
graphs of size N with λ2 ≥ k − 2

√
k − 1. Hence, these

graphs are optimal expanders [13]. A family of entan-
gled networks, will typically be a Ramanujan one (as λ2

tends to be maximized) and, therefore, a (close to opti-
mal) family of expanders. The explicit construction of
expanders and Ramanujan graphs is a currently active
field in graph-theory [13, 14], and it could serve as a
starting point for explicit entangled-network design.

Finally, we discuss some properties of entangled net-
works as related to other optimization or flow problems:

i) In a recent paper [15], the optimization of network
robustness against random and/or intentional removal of
nodes has been studied. It was concluded that for gen-
eralized random graphs in the limit N → ∞ the most
robust topology (maximizing the percolation threshold)
is characterized by a degree distribution with no more
than 3 distinct node connectivities; i.e. with a rather
homogeneous degree-distribution. To study the possible
connection with our super-homogeneous entangled net-
works, let us recall that the initial topology we have con-
sidered (i.e. k-regular graphs) is already the optimal so-
lution for robustness-optimization against errors and at-
tacks in random networks [15]. A natural question to ask
is whether further Q-optimization has some effect on the
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FIG. 3: Cage graphs for k = 3 and (a) g = 5 (Petersen)
and (b) g = 7 (McGee). Right panel: Percolation threshold
(main) and average first-passage time (inset) as a function
of the eigenratio Q, as obtained during the optimization of
a network with 500 nodes and 〈k〉 = 3. The initial network
corresponds to a 3-regular graph with N = 500.

network robustness. The answer is yes, as shown in fig. 3
where the percolation threshold for random or intentional
attacks (which for regular graphs coincide), fc, is plotted
versus Q for a particular Q-optimization run. This fur-
ther improvement of the robustness is possible because
entangled networks include correlations, absent in ran-
dom graphs [15], which favor the resilience to attacks.
This tendency is maintained for increasing N , confirm-
ing that entangled networks are also extremely efficient
from the robustness point of view (this remains true for
reliability against link removal [16]).

ii) The problem of optimal topologies for local search
with congestion has been tackled recently [2]. It has
been shown that whenever the density of information
packets traveling through the network is above a given
threshold (congestion), the optimal network topology for
packet flow towards its target node is a highly homoge-
neous, isotropic configuration, where all the nodes have
essentially the same degree, betweenness, etc [2]. We en-
counter the same super-homogeneity, characteristic of op-
timally synchronizable graphs, revealing that entangled
networks are also optimal (or perform extremely well) for
packet flow and local searches with congestion.

iii) A typical measure of the network performance for
flow properties is the average first-passage time, τ , of
random walks. It is defined as the average time it takes
to a random walker to arrive for the first time to a given
node starting from another one. For a k-regular graph,
τ can be expressed in terms of the Laplacian eigenvalues
as τ ∝ ∑

λ−1
n , where the sum runs over all non-zero

eigenvalues [17]. The largest contribution comes from
1/λ2, therefore minimizing Q guarantees a small τ (see
inset in fig. 3), providing more evidence that entangled
nets exhibit a very good performance for flow problems.

iv) Recently Kim concluded that neural networks with
lower clustering coefficient exhibit much better perfor-
mance than others [4]. Entangled nets have a very low
clustering coefficient as only large loops exist and, there-
fore, they are natural and excellent candidates to have a
good performance and large capacity.

All these features suggest that entangled networks, de-
fined here as networks which optimize synchronizability,
are also extremely good with respect to many different
highly desirable properties in networks. This allows us
to state the following conjecture: Given N and an av-
erage number of links per site k, there exists a network
topology (that of entangled nets) with (almost) optimal
properties in a global sense, characterized by homoge-
neous degree, betweenness, and distance distributions,
large girths, large average shortest loops, no community-
structure, and small diameters. A more precise topolog-
ical characterization of entangled graphs, as well as the
definition of an algorithmic procedure to build them up
(similar to those existing for expanders and Ramanujan
graphs), remain open and challenging problems with a
huge amount of potential applications. Finding clear-cut
examples of this topology in the real world, beyond artifi-
cial networks, is also a fundamental task to further gauge
the role played by this family of networks in Nature.
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